Phenomena in rank-one Z2-actions
نویسندگان
چکیده
منابع مشابه
Rank one phenomena for mapping class groups
Let Σg be a closed, orientable, connected surface of genus g ≥ 1. The mapping class group Mod(Σg) is the group Homeo(Σg)/Homeo0(Σg) of isotopy classes of orientation-preserving homeomorphisms of Σg. It has been a recurring theme to compare the group Mod(Σg) and its action on the Teichmüller space T (Σg) to lattices in simple Lie groups and their actions on the associated symmetric spaces. Indee...
متن کاملRANK ONE Zd ACTIONS AND DIRECTIONAL ENTROPY
Rank one transformations play a central role in the theory of ergodic measure preserving transformations. Having first been identified as a distinct class by Chacon in [3], their properties have been studied extensively (see for example [1], [7], [11], [6]). Rank one transformations have also served as an important tool for exploring the range of possible behavior of measure preserving transfor...
متن کاملALGEBRAIC Zd-ACTIONS OF ENTROPY RANK ONE
We investigate algebraic Z-actions of entropy rank one, namely those for which each element has finite entropy. Such actions can be completely described in terms of diagonal actions on products of local fields using standard adelic machinery. This leads to numerous alternative characterizations of entropy rank one, both geometric and algebraic. We then compute the measure entropy of a class of ...
متن کاملAlgebraic Z-actions of Entropy Rank One
We investigate algebraic Zd-actions of entropy rank one, namely those for which each element has finite entropy. Such actions can be completely described in terms of diagonal actions on products of local fields using standard adelic machinery. This leads to numerous alternative characterizations of entropy rank one, both geometric and algebraic. We then compute the measure entropy of a class of...
متن کاملCohomogeneity One Actions on Noncompact Symmetric Spaces of Rank One
We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces CHn, n ≥ 3. For the quaternionic hyperbolic spaces HHn, n ≥ 3, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classificat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2009
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm192-3-5